Connecting a Global Community in Clinical Chest Medicine

Register now at congress.chestnet.org
Zoonoses and Meliodosis

Grant Waterer
MBBS PhD MBA FRACP FCCP MRCP
Professor of Medicine, University of Western Australia
Professor of Medicine, Northwestern University, Chicago

Register now at congress.chestnet.org
Conflicts of interest

• I have no conflicts of interest related to this presentation

• I am humbled and concerned to have to talk about meliodosis in Thailand!
Pulmonary Zoonoses

- Viruses
 - Hanta virus, MERS, Avian Influenza

- Bacterial
 - Q Fever, Chlamydia spp (inc Psittacosis), Mycoplasma spp.,
 - Brucella, Leptospira, Tularemia, Yersinia, Streptococcus zooepidemicus

- Protozoa
 - More of a problem in solid organs (Trypanasoma cruzi, Toxoplasma gondii etc)
Question 1

• Spending 24 hours in an enclosed space with which of the following would not put you at risk of a zoonoses causing pneumonia?
 • A – a chicken
 • B – a pig
 • C – a chimpanzee
 • D – a camel
 • E – a bat
 • F – all of the above
Question 1

• Spending 24 hours in an enclosed space with which of the following would not put you at risk of a zoonoses causing pneumonia?

 • A – a chicken
 • B – a pig
 • C – a chimpanzee
 • D – a camel
 • E – a bat
 • F – all of the above
COMMONLY PERCEIVED BIOTERRORISM THREATS

- CDC category A
 - Easily transmitted or high person to person
 - Likely high mortality
 - High social impact/potential for panic
 - Anthrax, plague, smallpox, tularemia
 - Botulism, Ebola, Marburg, Lassa, other South American haemorrhagic fevers
COMMONLY PERCEIVED BIOTERRORISM THREATS

- CDC category B
 - Brucellosis
 - Ricin
 - Glanders (*Burkholderia mallei*)
 - Melioidosis (*Burkholderia pseudomallei*)
 - Psittacosis
 - Staph enterotoxin B
 - Q fever
 - Viral encephalitis
Why zoonoses so scary?

• No herd immunity
• High pathogenicicity in “first pass” transfer
Hanta Virus

- Hantaviruses are tri-segmented negative sense single-stranded RNA
- Worldwide
- Two syndromes
 - Haemorrhagic fever with renal syndrome
 - Hantavirus cardiopulmonary syndrome
- Humans contract infection through inhalation of aerosols from the saliva or urine of infected animals (rodents, shrews, moles and bats)
- Different hantaviruses have different manifestations
 - Andes virus typically causes severe cardiopulmonary syndrome
 - Prospect hill virus doesn’t cause disease in humans
 - “New World” hantaviruses – Cardiopulmonary, “Old World” hantaviruses – Haemorrhagic fever
- Estimation 20000 cases per year, most in Asia (Jiang et al Virologica Sinica 2017)
<table>
<thead>
<tr>
<th>Virus Isolate or strain</th>
<th>Abbreviation</th>
<th>Associated Disease</th>
<th>Rodent Host</th>
<th>Geographic Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amur virus (Zhang et al., 2013)</td>
<td>AMRV</td>
<td>HFRS</td>
<td>Apodemus penicillae</td>
<td>Russia, China, Korea</td>
</tr>
<tr>
<td>Dobrava-Belgrade virus (Papa, 2012)</td>
<td>DOBV</td>
<td>HFRS</td>
<td>Apodemus flavicollis</td>
<td>Europe (Balkans)</td>
</tr>
<tr>
<td>Hantaan Virus (Jiang et al., 2016)</td>
<td>HTNV</td>
<td>HFRS</td>
<td>Apodemus agrarius</td>
<td>China, South Korea, Russia</td>
</tr>
<tr>
<td>Puumala virus (Maes et al., 2004)</td>
<td>PUUV</td>
<td>HFRS/N/E, HCP0</td>
<td>Clethrionomys glareolus, Myodes glareolus</td>
<td>Europe (Finland)</td>
</tr>
<tr>
<td>Saaremaa virus (Pulssuina et al., 2009a)</td>
<td>DAAV</td>
<td>HFRS/N/E</td>
<td>Apodemus agrarius</td>
<td>Europe</td>
</tr>
<tr>
<td>Seoul virus (Yao et al., 2012)</td>
<td>SEOV</td>
<td>HFRS</td>
<td>Rattus norvegicus</td>
<td>Worldwide</td>
</tr>
<tr>
<td>Thailand hantavirus (Pattamadik et al., 2006; Garnage et al., 2011)</td>
<td>THAV</td>
<td>HFRS</td>
<td>Bandicota indica</td>
<td>Thailand</td>
</tr>
<tr>
<td>Tula virus (Nikolic et al., 2014)</td>
<td>TULV</td>
<td>HFRS</td>
<td>Microtus arvalis</td>
<td>Europe</td>
</tr>
<tr>
<td>Andes virus (Torres-Perez et al., 2016)</td>
<td>ANDV</td>
<td>HCP0</td>
<td>Oligozygomyzis longicaudatus</td>
<td>Argentina, Chile</td>
</tr>
<tr>
<td>Araucana virus (de Araujo et al., 2015)</td>
<td>ARAV</td>
<td>HCP0</td>
<td>Necromys lasiurus</td>
<td>Brazil</td>
</tr>
<tr>
<td>Bayou virus (Holzembourg et al., 2013)</td>
<td>BAYV</td>
<td>HCP0</td>
<td>Oryzomys palustris</td>
<td>North America</td>
</tr>
<tr>
<td>Bermejo virus (Padula et al., 2002)</td>
<td>BMJV</td>
<td>HCP0</td>
<td>Oligozygomyzis chacoensis</td>
<td>Argentina, Bolivia</td>
</tr>
<tr>
<td>Black Creek Canal virus (Knust and Rolin, 2013)</td>
<td>BCCV</td>
<td>HCP0</td>
<td>Sigmodon hispidus</td>
<td>North America</td>
</tr>
<tr>
<td>Castro Dos Bonhos virus (Firth et al., 2012)</td>
<td>CADV</td>
<td>HCP0</td>
<td>Oligozygomyzis spp.</td>
<td>Brazil</td>
</tr>
<tr>
<td>Choco virus (Nelson et al., 2010)</td>
<td>CHOV</td>
<td>HCP0</td>
<td>Oligozygomyzis flavescens</td>
<td>Panama</td>
</tr>
<tr>
<td>Jojutla virus (Figueiredo et al., 2014)</td>
<td>JUVQ</td>
<td>HCP0</td>
<td>Oligozygomyzis nigrofasciatus</td>
<td>Argentina, Brazil</td>
</tr>
<tr>
<td>Laguna Negra virus (Figueiredo et al., 2014)</td>
<td>LANV</td>
<td>HCP0</td>
<td>Calomys callosus</td>
<td>Argentina, Paraguay, Bolivia</td>
</tr>
<tr>
<td>Leliquanuas virus (Gutierrez et al., 2015)</td>
<td>LEOV</td>
<td>HCP0</td>
<td>Oligozygomyzis flavescens</td>
<td>Argentina</td>
</tr>
<tr>
<td>Maciel virus (Gutierrez et al., 2015)</td>
<td>MCLV</td>
<td>HCP0</td>
<td>Bolomys obscurus</td>
<td>Argentina</td>
</tr>
<tr>
<td>Monongahela virus (Rhodes et al., 2000)</td>
<td>MGLV</td>
<td>HCP0</td>
<td>Peromyscus leucopus</td>
<td>North America</td>
</tr>
<tr>
<td>Muleshoie virus (Rawlings et al., 1996)</td>
<td>MULEV</td>
<td>HCP0</td>
<td>Sigmodon hispidus</td>
<td>North America</td>
</tr>
<tr>
<td>New York virus (Knust and Rolin, 2013)</td>
<td>NYV</td>
<td>HCP0</td>
<td>Peromyscus leucopus</td>
<td>North America</td>
</tr>
<tr>
<td>Orn virus (Figueiredo et al., 2014)</td>
<td>ORNV</td>
<td>HCP0</td>
<td>Oligozygomyzis chacoensis</td>
<td>Argentina</td>
</tr>
<tr>
<td>Sin Nombre virus (Brocato et al., 2014)</td>
<td>SNV</td>
<td>HCP0</td>
<td>Peromyscus maniculatus</td>
<td>North America</td>
</tr>
</tbody>
</table>
Figure 1. Geographical representation of approximate incidence of hantavirus cardiopulmonary syndrome (HCPS) and hemorrhagic fever with renal syndrome (HFRS) by country per year (data updated to 2016).
Hanta virus

• Primary infect vascular endothelial cells
• Leads to endothelial dysfunction in capillaries and small vessels
• Cardiopulmonary syndrome first described in 1993
• Initial symptoms dry cough, increasing dyspnoea
• Rapidly evolving bilateral interstitial oedema
• Common to have renal failure, thrombocytopenia, haemorrhage, vomiting, diarrhoea, shock
Hanta diagnosis

- Clinical syndrome
 - Very easy to misdiagnose as influenza
- History of exposure
- Serology may be negative early on (<1 week) and is not readily available
- PCR assays unreliable
Hanta virus treatment

• Supportive care including ECMO
• Human immune plasma?
 – Vial et al Antivir Ther 2015
 – 32 cases, non significant trend to benefit
• Corticosteroids don’t help
 – Vial et al Clin Infect Dis 2013
Hantavirus CPS outcome

• Up to 35% mortality rate in hospitalised cases
 – Vial et al Clin Infect Dis 2013
• True mortality rate unknown but obviously much lower
• There are no reports of long term adverse outcomes in survivors
Coronaviruses

• Zoonoses that can make the leap to human-human
• SARS
• MERS
• More emerging
 – HKU1 in Thailand from bats
 – Joyjinda et al Microbiol Resour Announc 2019
Q-fever

- Coxiella burnetti – obligate intracellular Gram-negative bacteria
- Initially Rickettsia burnetti, now reclassified as a Legionellales
- Worldwide (except New Zealand)
- Cattle, goats, sheep, birds
- Urine, saliva, faeces, milk, especially birth products
- Animals are usually asymptomatic
- Can cause both acute (e.g. pneumonia) and chronic infection (2-5%)
- Is a vaccine (inactivated whole cell) but not widely available outside Australia.
- Cellular response in 60-90% for 5-years, failures have been reported especially with high exposure (Bond et al Vaccine 2017)
Q-fever pneumonia

- Male:Female 5:2
- Usually a mild disease
 - 60% of serological converters are asymptomatic
 - Only 2-4% hospitalised
 - Raoult et al Lancet Infect Dis 2005
- Presents as a flu-like illness 14-40 days post exposure
- High fever is usual (>38.5 °C)
- Pleuritic chest pain not unusual
- Rash 5-20%, punctiform or maculopapular, rarely erythema nodosum
- Hepatosplenomegaly common
- CXR is non specific, typically round opacities +/- pleural effusion, upper lobes>lower
- Can get meningitis/encephalitis, endocarditis, pericarditis, myocarditis
Q-fever pneumonia

• Diagnosis
 – Exposure
 – Serology (IFA) is the reference method
 • IgM and IgG detected
 – PCR assays now also available
 – Persistent high elevation (1:800) of Ab levels at 6 months = chronic infection
Q-fever pneumonia

- **Treatment**
 - Doxycycline 100mg BD 15 days drug of first choice
 - Clarithromycin, roxithromycin, azithromycin
 - Fluroquinolones (Ciprofloxacin, moxifloxacin, levofloxacin)
 - Cotrimoxazole and rifampicin if desperate due to allergy or contraindications
 - Need to follow up serology for 3-6 months
 - If have a valvular lesion follow up echocardiography to 12 months is advised
Cutaneous Anthrax
Early pulmonary anthrax
Tularemia

• Aerosolization
 – Primary pneumonic Tularemia
 – Typhoidal Tularemia
 – Oculoglandular Tularemia
 – Ulceroglandular Tularemia
 – Oropharyngeal Tularemia
Tularemia

• Following inhalation
 – Granuloma formation at entry and lymph nodes
 – 3-5 day incubation
 – Fever, chills, headache
 – Non productive cough and chest pain +/- pneumonia (50% have abnormal CXR)
 – Sore throat common and may be severe
 – May see ulcerative respiratory tract lesions
 – Septic shock and ARDS if not treated

• Mortality 35% without therapy, <5% with
Tularemia

• Treatment

• Gentamicin

• Ciprofloxacin, Doxycycline, or chloramphenicol

• Prophylaxis
 – Doxy 100mg bd or cipro 500mg bd
What’s the message

• There is no zoonose that is characteristic enough to diagnose every time or even most of the time
• An accurate history is critical
• Need to always be on the alert for emerging infections
Meliodosis

Register now at congress.chestnet.org

Connecting a Global Community in Clinical Chest Medicine
Organism

- *Burkholderia pseudomallei*
 - Aerobic, gram-negative motile bacillus
 - Found in water and moist soil
 - Opportunistic pathogen
 - Produces exotoxins
 - Can survive in phagocytic cells
 - Latent infections common
History

• 1912, Burma
• Alfred Whitmore
• Organism isolated in humans
 – Glanders-like disease
 • Colony growth differed
 – No equine exposure
 – “Whitmore” disease
History

- 1913, Malaysia
- Stanton and Fletcher
- “Distemper-like” outbreak in animals
 - Isolated *B. pseudomallei*
- Pioneered serological tests for diagnosis
Transmission

- Wound infection
 - Contact with contaminated soil or water
- Ingestion
 - Contaminated water
- Inhalation
 - Dust from contaminated soil
- Rarely
 - Person-to-person
 - Animal-to-person
Worldwide distribution of melioidosis.

Epidemiology

• Clinical disease uncommon
 – In endemic areas
 • Antibodies in 5 to 20% of agricultural workers
 • No history of clinical disease

• Wet season
 – Heavy rainfall
 – High humidity
temperature
Human Disease

- Incubation period: <1 day to years
 - Latent infection (~4% of presentations are reactivation)
- Most infections asymptomatic
- Clinical forms
 - Acute pulmonary infection
 • Most common
 - Focal infection
 - Septicemia
 - Neurological (rare)
- Alcoholism has a high association with mortality
Acute Pulmonary Infection

- Most common form
- High fever, headache
- Dull aching chest pain
- Cough, tachypnea, rales
- Chest X-rays
 - Upper lobe consolidation
 - Nodular lesions
 - Pleural effusion
Chronic Pulmonary Infection

- Easily misdiagnosed as tuberculosis
- ~10% of all cases of meliodosis reported
- Dull aching chest pain
- Cough, tachypnea, crackles
- Chest X-rays
 - Upper lobe consolidation
 - Nodular lesions
 - Pleural effusion
Melioid antibiotic resistance

• Efflux pumps
 – Aminoglycoside and macrolide resistance
 – Trimethoprim resistance
• Reduced outer membrane permeability
 – Polymyxin resistance
• Enzymatic breakdown
 – Beta-lactamases
Question 2

• For meliodosis, which of the following has been proven in a randomised controlled clinical trial
 • A – meropenem is superior to imipenem
 • B – meropenem is superior to ceftazidime
 • C – ceftazidime is superior to cotrimoxazole
 • D – imipenem is superior to cotrimoxazole
 • E – imipenem is superior to ceftazidime
 • F - none of the above
Question 2

- For meliodosis, which of the following has been proven in a randomised controlled clinical trial
 - A – meropenem is superior to imipenem
 - B – meropenem is superior to ceftazidime
 - C – ceftazidime is superior to cotrimoxazole
 - D – imipenem is superior to cotrimoxazole
 - E – imipenem is superior to ceftazidime
 - F – none of the above
Diagnosis and Treatment

• Diagnosis
 – Isolation of organism (Blood cultures positive in up to 55% in some series)
 – Various serological tests

• Treatment
 – Initial Systemic antibiotics 10-14 days, 28 days if extensive/severe disease
 • Ceftazidime – RCT vs chlor/doxy/cotrimoxazole 37% vs 74% White et al Lancet 1989
 • Trimethoprim sulfa
 – Surgical drainage of skin wounds
 – Subsequent oral eradication with cotrimoxazole or coamoxyclav from 3 months (Australia) up to 5 months (Thailand)

• No vaccine available – proving difficult

Center for Food Security and Public Health, Iowa State University, 2011
Meliodosis summary

• Know your local epidemiology
• High suspicion in right area
• Need to take a good history in all patients with pneumonia!
Thank you!

- grant.waterer@uwa.edu