

Difficult Asthma II Cased-based discussion Focus on Advanced Therapies

Clayton T. Cowl, MD, MS, FCCP Sandy Khurana, MD, FCCP

Disclosures

Cowl:

None

Khurana:

Grant support – GSK, Sanofi

We will not be discussing off-label use for any drugs or devices

Learning Objectives

- Review heterogeneity in asthma and understand the concept of cluster analysis
- Review the pathophysiologic mechanisms that form the basis for biologics in asthma
- Describe how phenotypes and endotypes can be used to choose targeted therapy in asthma
- Discuss the approach to the patient with severe asthma and choosing the appropriate advanced therapy

Outline

Cowl

- Case
- Overview of pathophysiology, phenotypes and biomarkers

Khurana

- Case
- Selection and efficacy of advanced therapies

- Jim is a never-smoker
- Diagnosed with asthma at age 3
- Asthma was mild during childhood and teenage years; worsened in his 20s, following an episode
 of pneumonia
- Recent 5 ED visits and 2 hospitalizations over past 2 years. Intubated twice in his lifetime.
- He reports daily cough, wheeze and shortness of breath. Asthma control test score is 11.
- Current medications include: Inhaled corticosteroid + long-acting β-agonist (ICS/LABA), long-acting muscarinic antagonist (LAMA), leukotriene modifier (LTM), antihistamine, intranasal corticosteroids, and proton pump inhibitor. He is also currently completing a prednisone taper for acute asthma.

Jim: A 38-year-old man with asthma

- Moved in with his parents two years ago after his first intubation/ICU admission
- His parents own a cat. The entire house is carpeted.
- Allergy skin testing during childhood was positive for multiple environmental allergens. He tried allergy shots (immunotherapy) for 2 years with some improvement.

Physical Exam:

Normal vital signs. BMI 26.

Erythematous nasal mucosa, no polyps or exudate

No stridor

Good air movement b/l, clear to auscultation

What will be your <u>next step</u> in evaluating Jim's asthma?

- A. Pre- and Post- bronchodilator spirometry
- B. Methacholine challenge test
- C. High resolution CT chest
- D. FeNO

What will be your next step in evaluating Jim's asthma?

- A. Pre- and Post- bronchodilator spirometry
- B. Methacholine challenge test
- C. High resolution CT chest
- D. FeNO

Case continued

Spirometry (BTPS)		AT:	4	Pr Broncho	-					ost lodilator
(5110)		Actual	Predicted	% Pred	CIR	ange		Actual	% Pred	% Chg
FEV ₁	L	1.88	3.86	49	3.14	4.58	Α	2.28	59	21
FVC	L	2.97	4.81	62	3.96	5.66	Α	3.58	74	21
FEV ₁ / FVC	%	63	80	79	70	90	Α	64	80	2
FEF ₂₅₋₇₅	L/s	1.06	3.74	28	2.28	5.20				
PEFR	L/s	5.67	9.51	60	7.40	11.62		6.37	67	12
FIF50	L/s	1.52						2.53		66
MVV	L/m		157.3		100.5	214.1				

- You confirm adherence and inhaler technique
- You identify and mitigate triggers
- You optimize management of comorbidities: GERD and CRS
- Asthma remains uncontrolled on current asthma regimen:

Inhaled corticosteroid

Long-acting beta agonist

Long-acting muscarinic antagonist

Leukotriene modifier (LTM)

Antihistamine

Nasal steroids

Proton pump inhibitor

What is true regarding the definition of phenotype vs endotype?

- A. A phenotype is the inflammatory pathway producing the endotype
- B. A phenotype is a collection of clinical characteristics; the endotype is the mechanism producing the phenotype
- C. There is one endotype for every phenotype
- D. Multiple phenotypes are associated with an endotype

What is true regarding the definition of phenotype vs endotype?

- A. A phenotype is the inflammatory pathway producing the endotype
- B. A phenotype is a collection of clinical characteristics; the endotype is the mechanism producing the phenotype
- C. There is one endotype for every phenotype
- D. Multiple phenotypes are associated with an endotype

Terminology & Definitions

<u>Phenotype</u>: Observable characteristic/traits

Endotype: Distinct pathophysiology that provides insight

into mechanism

Biomarker: Measurable indicator of biologic state

Selected asthma sub-phenotypes

Nature Reviews | Disease Primers

Wenzel Nature Medicine 2012 Holgate Nat. Rev. Dis. Primers 2015

Severe Asthma Research Program (SARP) clusters

Thailand Bangkok | 10-12 April

726 subjects in Severe Asthma Research

Program

628 total variables reduced to 34 core variables

Unsupervised hierarchical cluster analysis

Five major phenotypes emerged

- Younger, mild childhood onset, atopic
- Older, childhood onset, atopic, moderate severity
- Older women, high BMI, late-onset, non-atopic
- Severe, earlier onset, reversible obstruction
- Severe, later onset, fixed obstruction

What additional information will help guide further treatment for your patient?

- A. Allergy testing & IgE level
- B. Blood eosinophil count
- C. Serum periostin level
- D. A and B

What additional information will help guide further treatment for your patient?

- A. Allergy testing & IgE level
- B. Blood eosinophil count
- C. Serum periostin level
- D. A and B

Personalized approach to asthma

Dunn & Wechsler, Clin Pharmacol Ther 2015

Type 2 inflammation in asthma

Biomarkers in T2 asthma

Biomarker	Characteristics
Sputum Eos	Allergic & Eosinophilic Asthma Increased exacerbations and poor lung function
Blood Eos	Allergic & Eosinophilic asthma Increased exacerbations and poor lung function
IgE	Allergic asthma
FeNO	Indicator of oxidative and nitrative stress Allergic & eosinophilic asthma
Periostin	Potentially allergic & eosinophilic asthma

Parulekar. Curr Opin Pulm Med 2016

Interim summary

- Asthma is a complex heterogeneous condition
- Best understood in terms of underlying phenotypes (observable characteristics) and endotypes (specific biologic mechanisms)
- Biomarkers can provide information about the disease as well as targeted therapy
- Many biomarkers available for Type 2 asthma including sputum eosinophils, FeNO, blood eosinophils, IgE level
- No biomarkers currently available for non-Type 2 asthma and this is an area of great need

Back to our patient... Jim -A 38-year-old man with severe asthma

- Childhood asthma
- Uncontrolled on ICS, LABA, LAMA, LTM
- Frequent exacerbations
- Moderate airflow obstruction on spirometry with reversibility
- Adherence, triggers, comorbidities addressed and optimized
- Additional diagnostic tests performed

Scenario 1

WBCs	7.7 K/μL
Eos (%)	3.6
Absolute Eos	277 cells/μL
lgE	386 kU/L
FeNO	14 ppb

Multiple positives on blood test for allergies

- Dustmites
- Seasonal molds
- Trees
- Pollen
- Ragweed
- Cats
- Dogs

Which of the following therapies would you add to this patient's current regimen?

- A. Mepolizumab
- B. Omalizumab
- C. Dupilumab
- D. Lebrikizumab
- E. None of the above

Which of the following therapies would you add to this patient's current regimen?

- A. Mepolizumab
- B. Omalizumab
- C. Dupilumab
- D. Lebrikizumab
- E. None of the above

Omalizumab Decreases Asthma Exacerbations

Analysis I.2. Comparison I Subcutaneous omalizumab + steroid versus placebo + steroid (stable steroid), Outcome 2 Exacerbations requiring oral steroids.

Review: Omalizumab for asthma in adults and children

Comparison: I Subcutaneous omalizumab + steroid versus placebo + steroid (stable steroid)

Outcome: 2 Exacerbations requiring oral steroids

Study or subgroup	log [Rate Ratio] (SE)	Rate Ratio IV.Fixed,95% CI	Weight	Rate Ratio IV,Fixed,95% CI
I Moderate to severe asthma (100 240 2 40 70 20 00 20
INNOVATE	-0.6931 (0.225)	•	60.1 %	0.50 [0.32, 0.78]
Lanier 2009	-0.5978 (0.2763)	4	39.9 %	0.55 [0.32, 0.95]
Subtotal (95% CI)			100.0 %	0.52 [0.37, 0.73]
Heterogeneity: Chi ² = 0.07, df	$= 1 (P = 0.79); 1^2 = 0.0\%$			
Test for overall effect: Z = 3.75	(P = 0.00017)			
2 Severe asthma (ICS + LABA)				
Hanania 2011	-0.4155 (0.1965)	•	100.0 %	0.66 [0.45, 0.97]
Subtotal (95% CI)			100.0 %	0.66 [0.45, 0.97]
Heterogeneity: not applicable				
Test for overall effect: $Z = 2.11$	(P = 0.034)			
3 Severe asthma (ICS + LABA	+ other treatment)	P3 27		
Hanania 2011	-0.3285 (0.1573)	-	100.0 %	0.72 [0.53, 0.98]
Subtotal (95% CI)		-	100.0 %	0.72 [0.53, 0.98]
Heterogeneity: not applicable				

Favours Omalizumab

1.5 2

Omalizumab Decreases Hospitalizations

Analysis I.3. Comparison I Subcutaneous omalizumab + steroid versus placebo + steroid (stable steroid), Outcome 3 Hospitalisations.

Review: Omalizumab for asthma in adults and children

Comparison: | Subcutaneous omalizumab + steroid versus placebo + steroid (stable steroid)

Outcome: 3 Hospitalisations

		Odds Ratio	Weight	Odds Ratio
n/N	n/N	M-H,Fixed,95% CI	3447	M-H,Fixed,95% CI
1/268	2/257	87 <u>-8</u>	7.1 %	0.48 [0.04, 5.30]
3/208	13/211	-	44.4 %	0.22 [0.06, 0.79]
0/225	5/109	· ·	25.8 %	0.04 [0.00, 0.77]
0/274	6/272	-	22.7 %	0.07 [0.00, 1.33]
975	849	•	100.0 %	0.16 [0.06, 0.42]
(Placebo)				
$(P = 0.55); I^2 = 0.0$	%			
= 0.00017)				
0	0			Not estimable
lacebo)				
3	1/268 3/208 0/225 0/274 975 Placebo) (P = 0.55); I ² = 0.0 = 0.00017)	1/268 2/257 3/208 13/211 0/225 5/109 0/274 6/272 975 849 Placebo) 1 (P = 0.55); ² = 0.0% = 0.00017) 0 0	1/268 2/257 3/208 13/211 0/225 5/109 0/274 6/272 975 849 Placebo) 1 (P = 0.55); ² = 0.0% = 0.00017) 0 0	1/268 2/257 7.1 % 3/208 13/211 44.4 % 0/225 5/109 25.8 % 0/274 6/272 22.7 % Placebo) 1/268 2/257 7.1 % 1/268 2/257 7.1 % 1/268 2/257 7.1 % 1/268 2/257 7.1 % 1/268 2/257 7.1 % 1/268 2/257 7.1 % 1/268 2/257 7.1 % 1/268 2/257 7.1 % 1/268 2/257 7.1 % 1/268 2/257 7.1 % 1/268 2/257 7.1 % 1/268 2/257 7.1 % 1/268 2/257 7.1 % 1/268 2/257 7.1 % 1/268 2/257 7.1 % 1/268 2/257 7.1 % 1/268 2/257 7.1 % 1/268 2/257 7.1 % 1/268 2/257 7.1 % 1/268 2/257 2/2 %

Cochrane Database Syst Rev. 2014(1):CD003559.

Biomarkers Predict Response to Omalizumab

	Exacerbation rates					
	Low FeNO at baseline	High FeNO at baseline	Low eosinophils at baseline	High eosinophils at baseline	Low periostin at baseline	High periostin at baseline
Omalizumab	0.60	0.50	0.65	0.70	0.73	0.66
Placebo	0.71	1.07	0.72	1.03	0.72	0.93

Hanania NA, et al. Am J Respir Crit Care Med. 2013

Omalizumab: Duration of Therapy

Time to first exacerbation

Change in symptoms

Omalizumab: Safety

ncid	lence,	n	(%)	

	Core study (32 weeks)		Extension 1 (96 weeks)	Extension 2 (52 weeks)	Extension 3 (104 weeks)*
Event	Omalizumab ($n = 174$)	Placebo (n = 165)	Omalizumab ($n = 222$)	Omalizumab ($n = 178$)	Omalizumab ($n = 118$)
Any AE	136 (78.2)	135 (81.8)	195 (87.8)	134 (75.3)	78 (66.1)
Mild or moderate	120 (69.0)	105 (63.6)	156 (70.3)	115 (64.6)	71 (60.2)
Severe	16 (9.2)	30 (18.2)	39 (17.6)	19 (10.7)	7 (5.9)
Serious AEs	11 (6.3)	11 (6.7)	27 (12.2)	8 (4.5)	5 (4.2)
Treatment-related AEs	6 (3.4)	8 (4.8)	26 (11.7)	4 (2.2)	1 (0.8)

Scenario 2

WBCs	7.7 K/μL
Eos (%)	6.3
Absolute Eos	570 cells/μL
IgE	53 kU/L
FeNO	35 ppb

Blood test for allergies negative

Which of the following therapies would you add to the patient's current regimen?

- A. Omalizumab
- B. Mepolizumab
- C. Dupilumab
- D. Lebrikizumab
- E. None of the above

Which of the following therapies would you add to the patient's current regimen?

- A. Omalizumab
- B. Mepolizumab
- C. Dupilumab
- D. Lebrikizumab
- E. None of the above

Eosinophilic Asthma: Anti-IL5 Therapy

(mepolizumab, benralizumab, reslizumab)

Bangkok | 10-12 April

2019

Mechanism of action of anti-IL5 therapies

Tan et al. Journal of Asthma and Allergy 2016:9 71–81

Mepolizumab decreases exacerbation rates in patients with severe eosinophilic asthma

intravenously

24

28

Mepolizumab 100 mg, subcutaneously

16

Week

20

12

100-

50-

Mepolizumab has a steroid-sparing effect in patients with asthma and blood eosinophilia

Reslizumab decreases exacerbations in patients with uncontrolled asthma and blood eosinophilia

Benralizumab reduces frequency of asthma exacerbations

Bleecker ER, et al. Lancet, 2016 Fitzgerald JM, et al. Lancet. 2016

Benralizumab reduces OCS dose in severe asthma

Nair P, et al. N Engl J Med. 2017;376:2448-2458.

Scenario 3

WBCs	5.0 K/μL
Eos (%)	1.2
Absolute Eos	60 cells/μL
IgE	23 kU/L
FeNO	21 ppb

AND

OCS dependent

- A. Omalizumab
- B. Lebrikizumab
- C. Reslizumab
- D. Dupilumab
- E. None of the above

- A. Omalizumab
- B. Lebrikizumab
- C. Reslizumab
- D. Dupilumab
- E. None of the above

Dupilumab inhibits IL-4/IL-13

- IL-4 and IL-13 bind to a shared subunit, IL- $4R\alpha$
- Dupilumab, a human monoclonal IgG4 antibody, binds to IL-4Rα, blocking both IL-4 and IL-13 signaling
- IL-4 and IL-13 pathways have unique and

Middleton's allergy essentials Robinson et al. Clinical & Experimental Allergy 2017

Dupilumab reduces exacerbations in patients with uncontrolled asthma

Wenzel S. et al. Lancet Castro M. et al. NEJM 2018

Effect of dupilumab on exacerbation and lung function **EFFICE** Thailand by baseline Eos and FeNO

Bangkok 10-12 April

Castro M. et al. NEJM 2018

Dupilumab reduced OCS use

Summary

- Current biologics target patients with a T2 high phenotype
- Biomarkers of T2 inflammation can help to determine which therapies may be most efficacious
- Omalizumab treatment is effective in patients with atopic asthma
- Mepolizumab, benralizumab and reslizumab are effective in patients with eosinophilic asthma
- Dupilumab targets IL-4/IL-13 and is effective in patients with type 2 asthma
- Dupilumab, mepolizumab and benralizumab are effective in OCS-dependent asthma

Join colleagues from around the region to gain access to the CHEST learning and training experience at our regional congress. This unique program will go beyond the classroom-style setting to connect you to leading experts who will teach and develop you and your team.

Learn More: athens.chestnet.org

ATHENS 2019
GREECE | 27-29 JUNE

