

Practical Pulmonary Physiology (Part 1)

Darcy D. Marciniuk, MD, FRCPC, FCCP, FCAHS

Professor of Respirology, Critical Care and Sleep Medicine, Royal University Hospital Associate Vice-President Research, University of Saskatchewan Saskatoon, SK, CANADA

By the end of this presentation ...

- Understand practical standards for the conduct and interpretation of methacholine challenge testing
- Appreciate the real-world utility, and limitations, of 6-minute walk testing in the clinical setting
- Recognize less common pulmonary function test results that are often misdiagnosed, or delayed in correctly diagnosed

Conflict of Interest Disclosure

Consultancy

Alberta Lung Association, AstraZeneca, Boehringer-Ingelheim, Canadian Foundation for Healthcare Improvement, Chinese Committee of Health and Family Planning, GlaxoSmithKline, Health Canada, Lung Association of Saskatchewan, Mylan, Novartis, Saskatchewan Ministry of Health, Saskatchewan Health Authority, Yukon Health and Social Services

Research Funding (managed by University of Saskatchewan)

AstraZeneca, Boehringer Ingelheim, Canada Health Infoway, Canadian Institute of Health Research, GlaxoSmithKline, Lung Association of Saskatchewan, Lung Health Institute of Canada, Novartis, Sanofi, Saskatchewan Health Research Foundation, Schering-Plough

Employee

University of Saskatchewan

Pulmonary Physiology

Case #1

60-yr-old male, normal pulmonary function, treated empirically with ICS/LABA combination and albuterol prn, is being investigated for possible asthma. After withholding inhaled medication the morning of testing, he undergoes a methacholine challenge test:

Methacholine	FEV ₁ [L]	% Change		
Baseline	3.36			
0.25 mg/mL	3.46	+ 3.0%		
1.0 mg/mL	3.33	- 1.0%		
4.0 mg/mL	3.25	- 3.2%		
16.0 mg/mL	3.28	-2.5%		
After Albuterol	3.49	+ 4.0%		
	PC ₂₀ > 32 mg/mL			

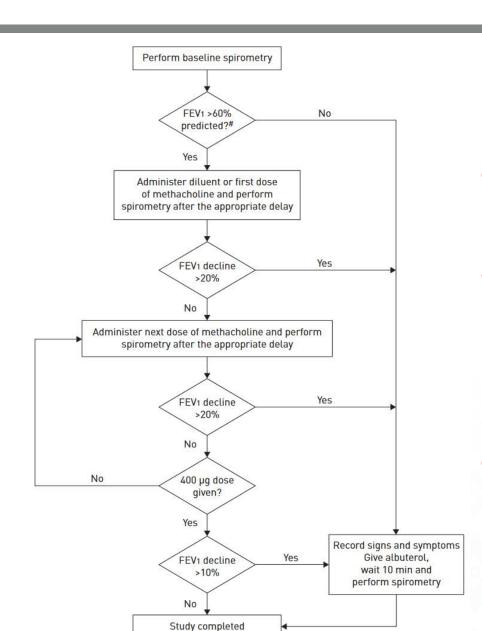
- a. Increase the dose of ICS/LABA
- b. Repeat the methacholine challenge test
- c. Augment therapy with an LTRA
- d. Cardiopulmonary exercise testing

- a. Increase the dose of ICS/LABA
- b. Repeat the methacholine challenge test
- c. Augment therapy with an LTRA
- d. Cardiopulmonary exercise testing

MCT - Medication Withholding Times*

Medication	Minimum time interval from last dose to MCT h	Reference(s)
Short-acting β-agonists in conventional inhaled doses (<i>e.g.</i> albuterol 200 μg)	6	[21, 22]
Long-acting β -agonists (e.g. salmeterol)	36	[23, 24]
Ultra-long-acting β-agonists (e.g. indacaterol, vilanterol, olodaterol)	48	[25]
Ipratropium (Atrovent 40 μg)	12	[26-28]
Long-acting anti-muscarinic agents	≥168	[29, 30]
Oral theophylline	12-24	[3]

* Inhaled corticosteroids and leukotriene modifiers have little or no effect in single dose, and do not need to be withheld unless the intent is to offload an anti-inflammatory effect – if yes, the duration of effect after regular use is uncertain, but a withhold time of 4–8 weeks is suggested.


Coates AL, et al. ERS Technical Standards – MCT. Eur Resp J 2017; 49:1601526

Methacholine	FEV ₁ [L]	% Change		
Baseline	3.36			
0.25 mg/mL	3.22	- 4.0%		
1.0 mg/mL	3.00	- 10.7%		
4.0 mg/mL	2.54	- 24.5%		
Following Albuterol	3.44	+ 2.3%		
	PC ₂₀ = 3.3 mg/mL			

Pulmonary Physiology

MCT Testing Sequence

Congress

2019

Thailand

Bangkok | 10-12 April

FEV₁ <1.5 L in adults is an additional contraindication

- Perform post-diluent spirometry at 30 and 90 secs after the nebulization is completed obtain an acceptable quality FEV₁ and FVC
 - this may require repeated attempts
- Calculate a target FEV₁ that indicates a 20% fall in FEV₁ (baseline FEV₁×0.8) using the post-diluent data value

Coates AL, et al. ERS Technical Standards – MCT. Eur Resp J 2017; 49:1601526

MCT – Categorization of Response

PD20 µmol (µg)	PC₂0 mg·mL ⁻¹	Interpretation		
>2 (>400)	>16	Normal		
0.5-2.0 (100-400)	4-16	Borderline AHR		
0.13-0.5 (25-100)	1-4	Mild AHR		
0.03-0.13 (6-25)	0.25-1	Moderate AHR		
<0.03 (<6)	< 0.25	Marked AHR		

Note: PD₂₀ <u>vs</u> PC₂₀. **MCT testing is more useful in excluding a diagnosis of asthma** than establishing one because its –ve predictive value, when symptoms are present, is greater than its +ve predictive value. The probability that a +ve MCT reflects asthma will increase the **lower the PC₂₀**, the **higher the pre-test probability of asthma** and the **more closely the methacholine-induced symptoms mimic the naturally occurring symptoms**.

Coates AL, et al. ERS Technical Standards – MCT. Eur Resp J 2017; 49:1601526

Pulmonary Physiology

Case #2

59-yr-old female performed a 6MWT for functional assessment in the setting of COPD [FEV₁ 0.58L, 24% predicted]. Results are:

	Baseline Rest	End of Test
Heart Rate (/min)	97	112
Blood Pressure (mm/Hg)	120/78	142/77
SpO ₂ (%)	97	96
Dyspnea (modified Borg)	1	8
Leg Fatigue (modified Borg)	0	3
Reason for Stopping		Breathing
Distance (m)	< < < < < < < < < < < < < < < < < < <	150
Was test d/c ^{ed} prior to 6 mins?	No	
Was supplemental O ₂ used?	No	
Total number of rest stops	6	

The patient's management was optimized, and she underwent a 2nd repeat 6MWT 3 months later. The results are:

	1 st Test	2 nd Test
Heart Rate (/min)	112	114
Blood Pressure (mm/Hg)	142/77	135/82
SpO ₂ (%)	96	95
Dyspnea (modified Borg)	8	8
Leg Fatigue (modified Borg)	3	2
Reason for Stopping	Breathing	Breathing
Distance (m)	150	188
Was test d/c ^{ed} prior to 6 mins?	No	No
Was supplemental O ₂ used?	No	No
Total number of rest stops	6	3

- a. Yes
- b. No
- c. Can not determine from the information provided
- d. Really can't say I don't use the 6MWT very much in my clinical practice

- a. Yes
- b. No

c. Can not determine from the information provided

d. Really can't say - I don't use the 6MWT very much in my clinical practice

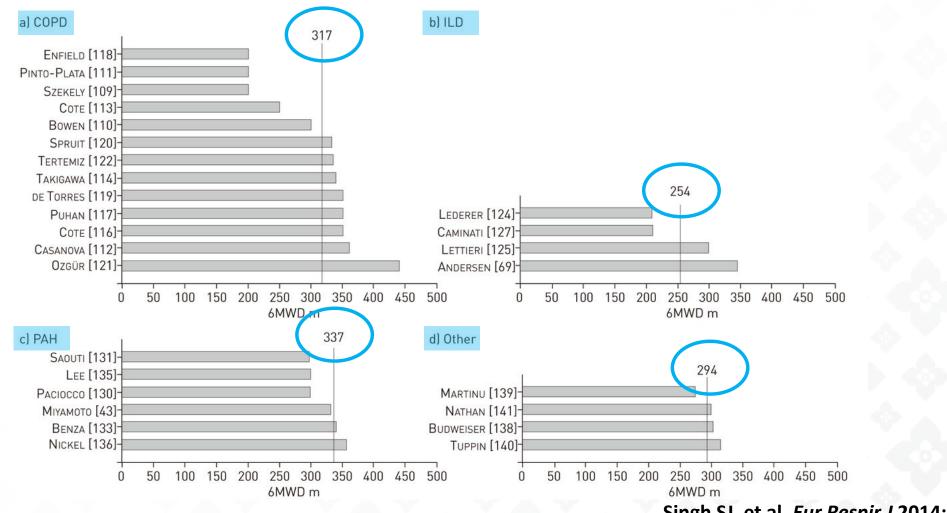
6MWT – Considerations

- is susceptible to a significant training effect
 - a practice test should always be conducted
- demonstrates a ceiling effect smaller change in the 'near normal'
- standardization [really] improves reproducibility
 - encouragement, hallway length, walking course, etc.
- responsive to interventions
 - LVRS, pulmonary rehabilitation, bronchodilators, altered inspired gases, and pharmacologic therapies in varied populations

correlates with important outcomes

hospitalization, mortality, HRQL

Singh SJ, et al. Eur Respir J 2014; 44:1447-1478. Holland AE, et al. Eur Respir J 2014; 44:1428-1446.



Minimal Clinically Important Difference (MCID) for the 6MWD 80-Distribution-based □ Anchor-based □ Other 70-**Recommended MCID** 60 for the 6MWT is 30m □ 54 6MWD m 50 40 **3**5 33 31 □ 30 30 28 25 26 20-WISE PUHAN HOLLAND PUHAN POLKEY GILBERT ΜΑΤΗΑΙ HOLLAND SWIGRIS DU BOIS Redelmeier [83] [192] [193] [84] [194] [195] [197] [198] [85] [196] [62] COPD PAH ILD

Singh SJ, et al. *Eur Respir J* 2014; 44:1447-1478

6MWT Distance Thresholds for Increased Mortality

Singh SJ, et al. *Eur Respir J* 2014; 44:1447-1478

Effect of Methodological Variations on 6MWD

Variation in methodology	Studies n	First author [ref.]	Effect on 6MWD			
Hallway <i>versus</i> treadmill	2	STEVENS [14]	13–20% less on treadmill			
		DE ALMEIDA [15]				
Indoors <i>versus</i> outdoors	1	BROOKS [16]	4 m (1%) more outside			
Circular <i>versus</i> straight track	2	BANSAL [17]	13–19 m (3–5%) more on circular track			
		SCIURBA [18]				
Track length	2	SCIURBA [18]	No statistically significant difference in 6MWD			
		BEEKMAN [19]	from tracks of 15–121 m			
			50 m more on 30-m track compared to 10-m track			
Wheeled walking aid versus no aid	6	GUPTA [20]	Weighted mean 6.2% more with wheeled walker			
		HONEYMAN [21]	Range 2–46 m more with wheeled walker			
		PROBST [22]	83 m more with modern draisine compared			
		R оомі [23]	to wheeled walker			
		SOLWAY [24]				
		VAES [25]				
With versus without oxygen	4	DAVIDSON [26]	12–59 m more with oxygen			
		FUJIMOTO [27]				
		ROOYACKERS [28]				
		JOLLY [29]				
Oxygen <i>versus</i> compressed air	2	JOLLY [29]	17–109 m more with oxygen			
		McDonald [30]				
Carry oxygen versus oxygen in wheeled cart	1	Crisafulli [31]	23 m more with wheeled cart			
Patient carries oxygen <i>versus</i> tester	1	Woodcock [32]	24 m versus 35 m improvement			
carries oxygen	1	WOODCOCK [32]				
Encouragement	1	GUYATT [33]	30.5 m more with encouragement			
Instructions	1	WEIR [34]	53 m further when asked to walk as "fast" as possible, rather than as "far" as possible			

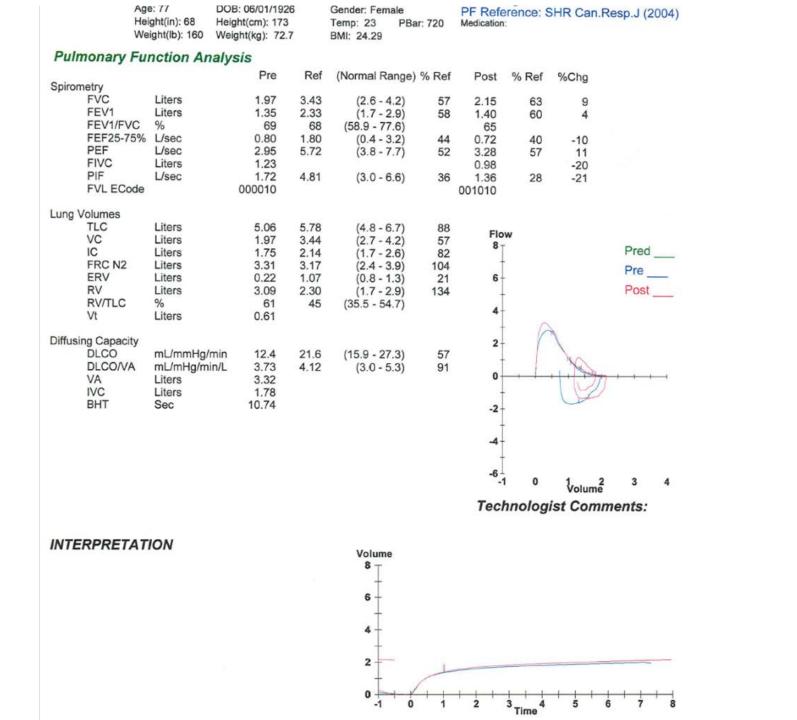
			50 m more on 30-m track compared to 10-m track
Wheeled walking aid versus no aid	6	GUPTA [20]	Weighted mean 6.2% more with wheeled walker
		HONEYMAN [21]	Range 2–46 m more with wheeled walker
		PROBST [22]	83 m more with modern draisine compared
		Rоомі [23]	to wheeled walker
		SOLWAY [24]	
		VAES [25]	
With versus without oxygen	4	DAVIDSON [26]	12–59 m more with oxygen
		Fujimoto [27]	
		ROOYACKERS [28]	
		JOLLY [29]	
Oxygen versus compressed air	2	JOLLY [29]	17–109 m more with oxygen
		McDonald [30]	
Carry oxygen versus oxygen in wheeled cart	1	Crisafulli [31]	23 m more with wheeled cart
Patient carries oxygen versus tester	1	WOODCOCK [32]	24 m versus 35 m improvement
carries oxygen			
Encouragement	1	GUYATT [33]	30.5 m more with encouragement
Instructions	1	WEIR [34]	53 m further when asked to walk as "fast" as
			possible, rather than as "far" as possible

Standardized Preparation for the 6MWT

"The aim of this test is to walk as far as possible for 6 minutes. You will walk this hallway between the markers, as many times as you can in 6 minutes.

I will let you know as each minute passes, and then at 6 minutes I will ask you to stop where you are. 6 minutes is a long time to walk, so you will be exerting yourself. You are permitted to slow down, to stop, and to rest as necessary, but please resume walking as soon as you are able.

Remember the objective is to walk as far as possible for 6 minutes, but don't run or jog. Do you have any questions?"


1 min	"You are doing well. You have 5 mins to go."
2 min	"Keep up the good work. You have 4 mins to go."
3 min	"You are doing well. You are halfway."
4 min	"Keep up the good work. You have only 2 mins left."
5 min	"You are doing well. You have only 1 min to go."
6 min	"Please stop where you are."
If patient stops during the test, every 30s once $SpO_2 \ge 85\%$	"Please resume walking whenever you feel able."

Pulmonary Physiology

Case #3

77-yr-old female: unexplained shortness of breath

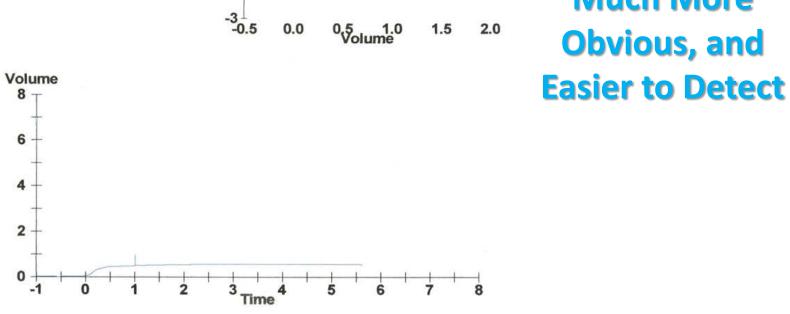
	Age: 77 Height(in): 68 Weight(lb): 160	DOB: 06/01/1920 Height(cm): 173 Weight(kg): 72.7		Gender: Female Temp: 23 PBa BMI: 24.29	PF Reference: SHR Can.Resp.J (200 Medication:					
Pulmonary Function Analysis										
		Pre	Ref	(Normal Range)	% Ref	Post	% Ref	%Chg		
Spirometry										
FVC	Liters	1.97	3.43	(2.6 - 4.2)	57	2.15	63	9		
FEV1	Liters	1.35	2.33	(1.7 - 2.9)	58	1.40	60	4		
FEV1		69	68	(58.9 - 77.6)		65				
	5-75% L/sec	0.80	1.80	(0.4 - 3.2)	44	0.72	40	-10		
PEF	L/sec	2.95	5.72	(3.8 - 7.7)	52	3.28	57	11		
FIVC	Liters	1.23	4.04			0.98		-20		
PIF	L/sec	1.72	4.81	(3.0 - 6.6)	36	1.36	28	-21		
FVLE	Code	000010				001010				
Lung Volume	s									
TLC	Liters	5.06	5.78	(4.8 - 6.7)	88					
VC	Liters	1.97	3.44	(2.7 - 4.2)	57	Flo	w			
IC	Liters	1.75	2.14	(1.7 - 2.6)	82	8			Pred	
FRC		3.31	3.17	(2.4 - 3.9)	104	t			Dro	
ERV	Liters	0.22	1.07	(0.8 - 1.3)	21	6-			Pre	
RV	Liters	3.09	2.30	(1.7 - 2.9)	134	1			Post	
RV/TL	_C %	61	45	(35.5 - 54.7)						
Vt	Liters	0.61				4-				
						t	P	A		
Diffusing Cap						2-	(
DLCC	•		21.6	(15.9 - 27.3)	57	1		No		
DLCC			4.12	(3.0 - 5.3)	91	0		1. 1. There		
VA	Liters	3.32				•				
IVC	Liters	1.78				t		1 Se		
BHT	Sec	10.74				-2 -				
						+				
						-4-				
						Ť				
						-6⊥ -1	0	1 2	3 4	
							•	1 2 Volume		

1 Volume

77-yr-old female: unexplained shortness of breath

Please Interpret These Pulmonary Function Tests:

- a. Obstructive pattern
- b. Restrictive pattern
- c. Combined obstructive/restrictive pattern
- d. Something else is going on here ...



- a. Obstructive pattern
- b. Restrictive pattern
- c. Combined obstructive/restrictive pattern
- d. Something else is going on here ...

	He	e: 77 ight(in): 68 sight(lb): 160	DOB: 06/01/1926 Height(cm): 173 Weight(kg): 72.7		Gender: Female Temp: 23 PB BMI: 24.29	ar: 720	PF Refe Medication	PF Reference: SHR Can.Resp., Medication:		esp.J (2004)	
Pulmonary Function Analysis											
			Pre	Ref	(Normal Range) % Ref	Post	% Ref	%Chg		
Spiron	netry							09 CL 100 CC			
	FVC	Liters	1.97	3.43	(2.6 - 4.2)	57	2.15	63	9		
	FEV1	Liters	1.35	2.33	(1.7 - 2.9)	58	1.40	60	4		
	FEV1/FVC	%	69	68	(58.9 - 77.6)		65				
	FEF25-75%	L/sec	0.80	1.80	(0.4 - 3.2)	44	0.72	40	-10		
	PEF	L/sec	2.95	5.72	(3.8 - 7.7)	52	3.28	57	11		
	FIVC	Liters	1.23				0.98		-20		
	PIF	L/sec	1.72	4.81	(3.0 - 6.6)	36	1.36	28	-21		
	FVL ECode		000010				001010				
Lung \	Volumes										
	TLC	Liters	5.06	5.78	(4.8 - 6.7)	88	Flo				
	VC	Liters	1.97	3.44	(2.7 - 4.2)	57	8				
	IC	Liters	1.75	2.14	(1.7 - 2.6)	82				Pred	
	FRC N2	Liters	3.31	3.17	(2.4 - 3.9)	104	1			Pre	
	ERV	Liters	0.22	1.07	(0.8 - 1.3)	21	6 -				
	RV	Liters	3.09	2.30	(1.7 - 2.9)	134	-			Post	
	RV/TLC	%	61	45	(35.5 - 54.7)						
	Vt	Liters	0.61				4-				
							-	0	The second second		
Diffusi	ng Capacity						2-	. /	1		
	DLCO	mL/mmHg/	min 12.4	21.6	(15.9 - 27.3)	57			ha		
	DLCO/VA	mL/mHg/mi	n/L 3.73	4.12	(3.0 - 5.3)	91			1 Mars		
	VA	Liters	3.32				0 -		1 1 1 1977		
	IVC	Liters	1.78					-			
	BHT	Sec	10.74				-2		Car		
							_				
Respir	atory Muscle						200				
	PI max	cmH2O	20	91	(52.8 - 129.6)	22	-4-				
	PE max	cmH2O	28	51	(15.0 - 87.2)	55	2				
							-6				
							-1	0	1 2 Volume	3 4	
									Toruno		

		Age: 58 Height(in): 60 Weight(lb): 78	-	nt(cm): 1 ht(kg): :	152 Ra	ender: Fer ace: emp: 20		ar: 716	Diagnosis: Medication: SALBUTAMOL NEB 1X 18H				
Pu	Ilmonary	Function Ar	nalysi	S						Flow 4 _T		ed	
Spiror		Litore	Pre	Ref	(4.9. 0.5)	% Ref	Post	% Ref	%Chg	3	Pre	e	
	FVC FEV1 FEV1/FVC FEF25-75%	Liters Liters % L/sec	0.55 0.49 89 1.12	2.66 1.96 74 2.41	(1.8 - 3.5) (1.2 - 2.7) (62.8 - 85.4) (0.9 - 3.9)	25				2		51	58-yr-old female:
	PEF FIVC PIF	L/sec Liters L/sec	2.20 0.47 1.99	5.28 2.66	(0.9 - 3.9) (2.4 - 8.1) (1.7 - 3.6)	42				1			Post-polio
Lung	FVL ECode		000001									·	kyphoscoliosis and
3	VC IC ERV	Liters Liters Liters	0.60 0.38 0.21	2.66 1.73 0.86	(1.7 - 3.6) (1.3 - 2.2) (0.6 - 1.1)					-1 -			quadriplegia
Respir	iratory Muscle F PI max PE max	Force cmH2O cmH2O	23 17	74 139	(50.3 - 98.5) (98.7 - 179.9)	31 12				-2-	\bigvee		
										,			Much More

Obvious, and

INTERPRETATION

Respiratory Muscle Pressures

- Maintain the maximal inspiratory [or expiratory] pressure for ~2 secs, with the largest negative [or positive] pressure sustained for 1 sec. recorded
 - max value from 3 suitable maneuvers reported
- Values decrease with age, and are ~1/3 lower in females when compared to men
- In normal healthy individuals, 95% of the test-to-test variation has a magnitude of less than 25 cmH₂O

- Normal MIP excludes inspiratory muscle weakness, but a low MIP does not reliably confirm weakness
 - low +ve predictive value variable effort/technique
- MIP <1/3 normal predicts hypercarbic respiratory failure
- MEP <60 cmH₂O predicts a weak cough/difficulty clearing secretions
- fall in FVC upright to the supine position correlates with significant inspiratory muscle weakness
 - when upright, a low FVC is less specific than the MIP for detecting respiratory muscle weakness

Practical Pulmonary Physiology (Part 2)

Clayton T. Cowl, MD, MS, FCCP, FACOEM

Chair, Division of Preventive, Occupational & Aerospace Medicine Joint Appointment, Division of Pulmonary & Critical Care Medicine Mayo Clinic Rochester, Minnesota USA

By the end of this presentation ...

- Understand basic principles of hypobaric hypoxia
- Appreciate variables to consider when prescribing supplemental oxygen
- Recognize symptoms of decompression illness, findings that are often misdiagnosed, or delayed in correctly diagnosing

Conflict of Interest Disclosure

Consultancy

None

Research Funding (managed by Mayo Clinic)

U.S. Department of Labor; AVOX Incorporated (manufacturer of airline passenger and pilot quick-don oxygen masks)

Employee

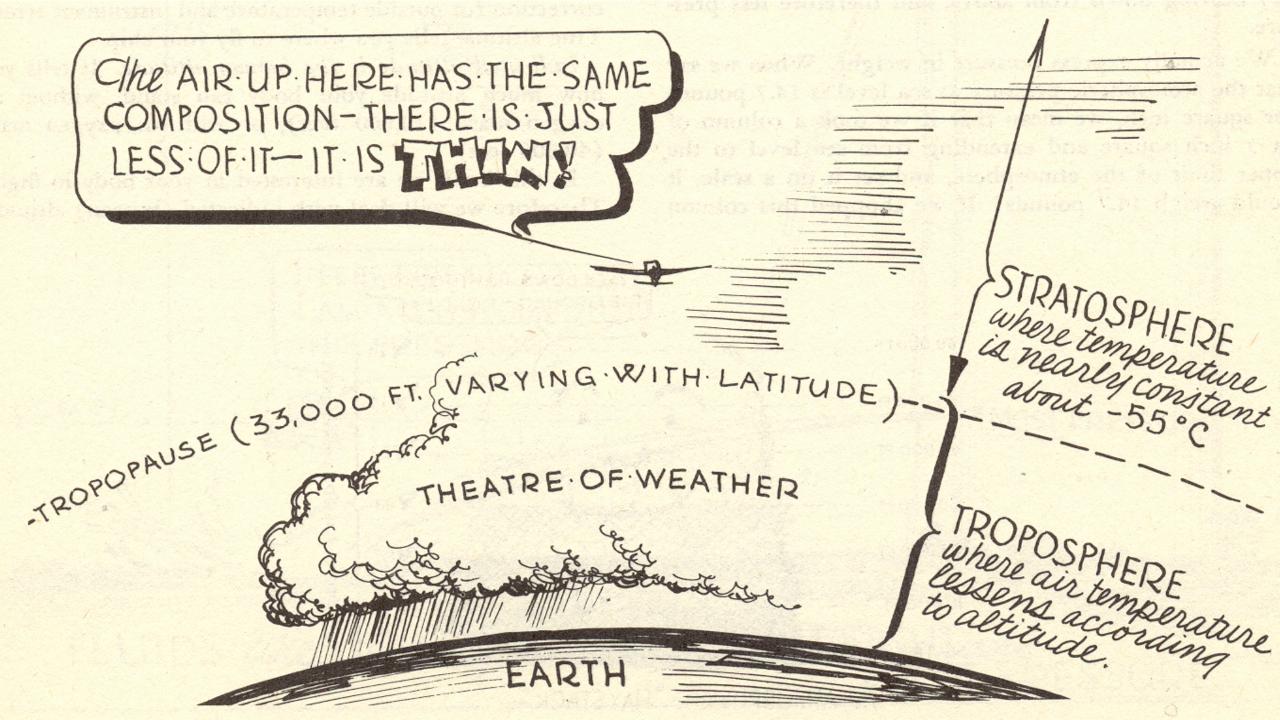
Mayo Clinic

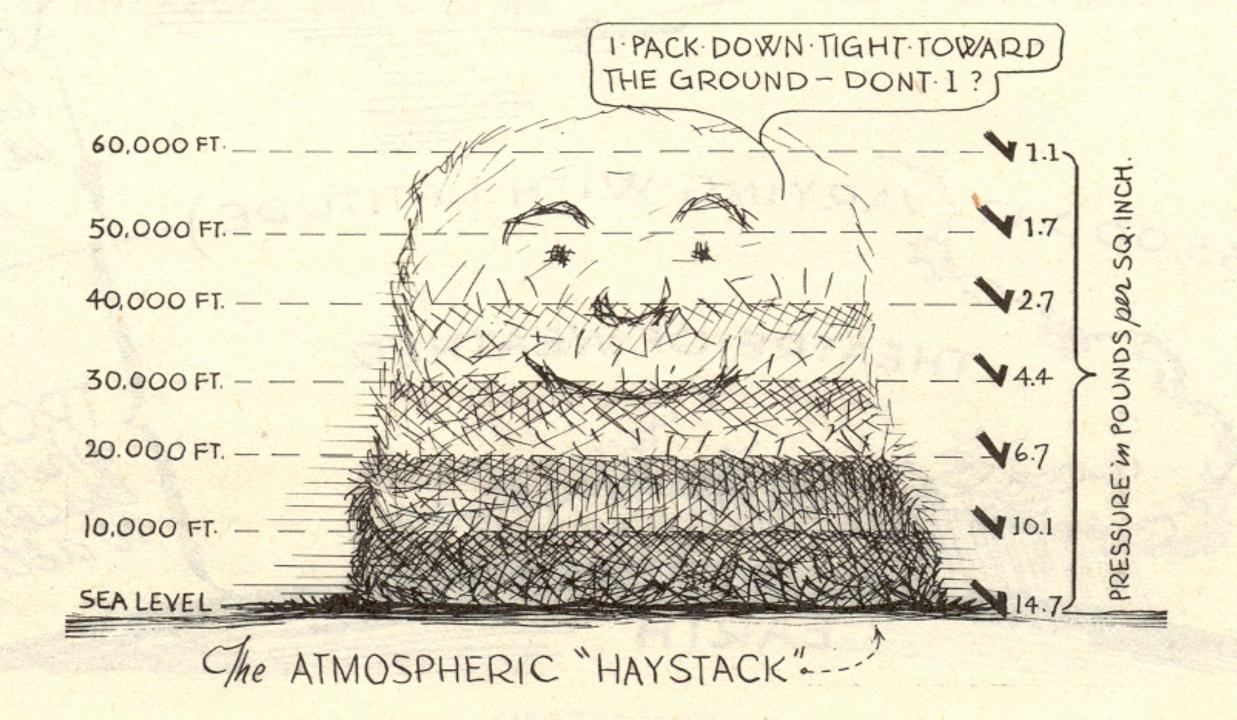
Case #4

What is happening in this photo?

What is happening in the photo?

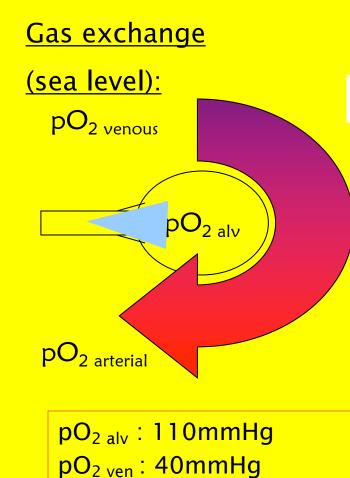
- a. Traveling to a sleep apnea convention
- b. Treating "the bends"
- c. Flying in an unpressurized airline cabin
- d. Staying calm after a rapid decompression




What is happening in the photo?

- a. Traveling to a sleep apnea convention
- b. Treating "the bends"
- c. Flying in an unpressurized airline cabin
- d. Staying calm after a rapid decompression

	Physical Divisions of the Atmosphere				
	>600 km	Exosphere			
Stratosphere Troposphere Interactions: An	95-120 km	Thermosphere (d "s	"space") approx 100 km (62 mi)		
Introduction K. Mohanakumar Springer Science & Business Media, Jul 3, 2008 - Science	50-60 km	Mesosphere			
	30K-60K ft	Stratosphere	Armstrong Line (body fluids "boil") 62,000 to 68,000 ft		
	Mt Everest 29,028ft	7 Troposphere	Tropopause		



pO_{2 art} : 100mmHg

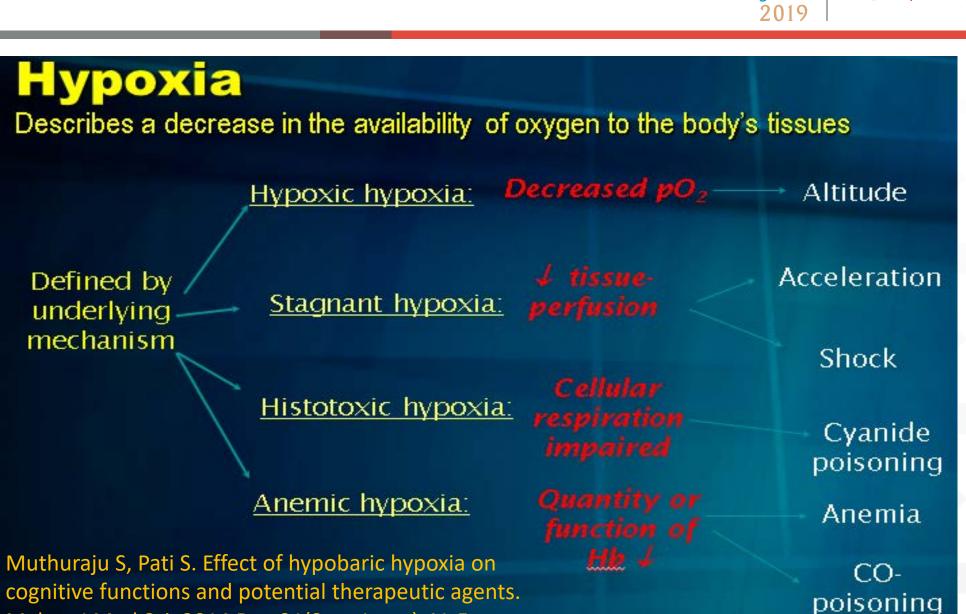
 $P_{Io_2} = (P_B - P_{H_2O}) = 760 \text{mmHg} - 47 \text{mmHg}$ 713mmHg x 21% = 150mmHg

$$P_{AO2} = P_{IO2} - P_{ACO2} \left[F_{IO2} - \frac{(1 - F_{IO2})}{R} \right]$$

 $R = \frac{\dot{V}_{CO_2}}{\dot{V}_{O_2}}$ Assuming R=1, the equation becomes:

 $P_{A_{O_2}} = P_{I_{O_2}} - P_{A_{CO_2}} = 150$ mmHg - 40mmHg =110mmHg

ALTITUDE		PRESSURE		
feet	meters	mm Hg	in Hg	lb/in ²
0	0	760	29.92	14.69
5,000	1,525	632	24.9	12.23
10,000	3,048	523	20.58	10.11
15,000	4,572	429	16.88	8.29
20,000	6,096	349	13.74	6.75
25,000	7,620	282	11.09	5.45
30,000	9,144	226	8.87	4.36
35,000	10,668	179	7.04	3.46
40,000	12,192	141	5.53	2.72
45,000	13,716	111	4.35	2.14
50,000	15,240	87.3	3.44	1.69
55,000	16,764	68.8	2.71	1.33
60,000	18,288	54.1	2.14	1.05
65,000	19,812	42.3	1.66	0.8164
70,000	21,336	33.3	1.32	0.6494
75,000	22,860	26.2	1.03	0.5057
80,000	24,384	20.7	0.82	0.4028
85,000	25,908	16.4	0.644	0.3165
90,000	27,432	13	0.508	0.2496
95,000	28,956	10.3	0.404	0.1988



Gas exchange (sea level): pO_{2 venous} pO_{2 alv} pO_{2 arterial}

> pO_{2 alv} : 110mmHg pO_{2 ven} : 40mmHg pO_{2 art} : 100mmHg

 $P_{Io2} = (P_B - P_{H_2O}) = 760 \text{mmHg} - 47 \text{mmHg}$ 713 mmHg x 21% = 150 mmHg 349-47=302 302 x .21 = 63 $P_{Ao2} = P_{Io2} - P_{Aco2} \left[F_{Io2} - \frac{(1 - F_{Io2})}{R} \right]$ $R = \frac{\dot{V}_{CO2}}{\dot{V}_{O2}}$ Assuming R=1, the equation becomes:

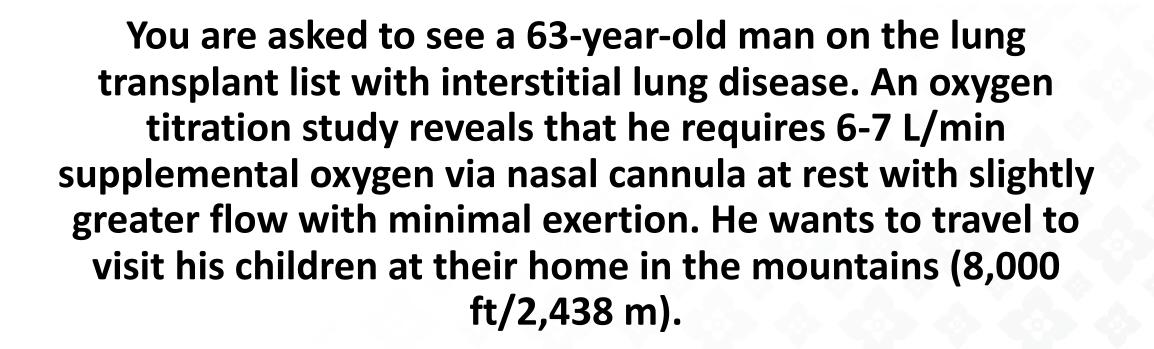
 $P_{A_{O_2}} = P_{I_{O_2}} - P_{A_{CO_2}} = 150$ mmHg - 40mmHg =110mmHg 63 - 40 = 23 mmHg

SCHEST

Congress

Thailand

Bangkok | 10-12 April


Malays J Med Sci. 2014 Dec;21(Spec Issue):41-5.

Case #5

- Approve travel by air using a portable oxygen concentrator
- b. Recommend traveling by car and using pursed lip breathing until stationary concentrator can be set up at destination
- c. Suggest no travel by patient at any time
- d. Have patient use tank oxygen while traveling with backup stationary concentrator at destination

- Approve travel by air using a portable oxygen concentrator
- b. Recommend traveling by car and using pursed lip breathing until stationary concentrator can be set up at destination
- c. Suggest no travel by patient at any time
- d. Have patient use tank oxygen while traveling with backup stationary concentrator at destination

Oxygen Concentrator

- Provides 95% pure O2
- Never requires refill
- Maximum flow rates 5-10 L/min
- Runs on electricity and has alarm if power fails
- Back-up oxygen needs to be in place in the home for use during equipment or power failure

SCHEST

Congress

2019

Thailand

Bangkok | 10-12 April

Home Transfill Oxygen Systems (HTF)

- Unlimited oxygen supply
- Refillable cylinders
- Reduced storage requirements for oxygen cylinders
- Reduced electrical costs
- Operates in conjunction with oxygen concentrator

Liquid oxygen systems

- Requires scheduled refills with liquid oxygen (75 lbs O₂ = 4-8 days)
- Portable unit is refilled from a stationary unit
- Delivery system required for oxygen mask and highflow patients
- More cumbersome and less availability than other systems
- Is not flammable, but is concentrated and can be dangerous if coming in contact with organic substances

Portable O₂ gas delivery system

- Use for portability outside of the home (with conserving device can last 4-12 hours on 2 L / min)
- Cylinders weigh 7-11 pounds
- Transported by cart or carry strap
- Cylinders last 3-5 hours on 2L/min depending on cylinder size
- Can be used as a backup system to a concentrator
- Conserving device attachment requires oximetry testing to confirm setting that maintains O₂ saturation

Case #6

A 37-year-old woman comes to your office after vacationing in the Caribbean where she and her significant other went diving. There was a discount by the dive outfitter if they would dive three days in a row. The last dive concluded on a Friday morning and they departed for home by air that evening. Upon their return home, she noted severe joint pain in her left hip and right shoulder. She was unaware of any trauma to these areas. No

bruising or limitation in range of motion is noted on exam. Her lungs are clear and there are no other abnormalities.

What would be the most appropriate next step?

- a. Immediately provide the patient 1L/min of supplemental oxygen via nasal cannula
- b. Apply 100% FiO2 and refer for hyperbaric oxygen therapy
- c. Perform a joint aspiration and inject with corticosteroids
- d. Prescribe 800 mg of ibuprofen and have patient call if pain worsens

What would be the most appropriate next step?

- a. Immediately provide the patient 1L/min of supplemental oxygen via nasal cannula
- b. Apply 100% FiO2 and refer for hyperbaric oxygen therapy
- c. Perform a joint aspiration and inject with corticosteroids
- d. Prescribe 800 mg of ibuprofen and have patient call if pain worsens

Decompression illness ("The Bends")

Type I DCS

- Musculoskeletal pain and mild cutaneous symptoms such as itching and mild rashes (as distinct from a clear mottled or marbled and sometimes raised discoloration of the skin — a condition that is known as *cutis marmorata* that may occur prior to development of the more serious symptoms of Type 2 DCS).
- Less common but still associated with Type 1 DCS is obstruction of the lymphatic system, which can result in swelling and localized pain in the tissues surrounding the lymph nodes — such as in the armpits, groin or behind the ears.
- Symptoms can build in intensity, but does not typically increase upon movement of the affected joint, although holding the limb in one position rather than another may reduce discomfort. Such pain can ultimately be quite severe.

Decompression illness ("The Bends")

Type II DCS

- Considered more serious and symptoms may develop quickly or slowly and fall into three categories: neurological, inner ear and cardiopulmonary.
- Neurological symptoms: numbness; paresthesia, or an altered sensation, such as tingling; muscle weakness; an impaired gait, or difficulty walking; problems with physical coordination or bladder control; paralysis; or a change in mental status, such as confusion or lack of alertness.
- Inner-ear symptoms may include ringing in the ears, known as "tinnitus"; hearing loss; vertigo or dizziness; nausea; vomiting; and impaired balance.
- Cardiopulmonary symptoms, known commonly as "the chokes," include a dry cough; chest pain behind the sternum, or breastbone; and dyspnea.

Thank you for your attention!