Welcome!

In partnership with the CHEST Delegation Italy
What’s Happening in Non-COVID Sepsis

Steven Q Simpson, MD, FCCP
President-elect CHEST
Professor of Medicine
Division of Pulmonary, Critical Care, and Sleep Medicine
University of Kansas
• I have nothing to disclose
Epidemiology
Sepsis Among Medicare Beneficiaries: Manuscript Trilogy

The Burdens of Sepsis 2012-2018

The Trajectories of Sepsis 2012-2018

The Methods, Models and Forecasts of Sepsis 2012-2018

Critical Care Medicine 2020; 48(3), 276-318

Timothy G. Buchman, PhD, MD1,2; Steven Q. Simpson, MD1,3; Kimberly L. Sciarretta, PhD1; Kristen P. Finne, BA4; Nicole Sowers, MPP5; Michael Collier, BA6; Saurabh Chavan, MBBS, MPH5; Ibijoke Oke, MPA5; Meghan E. Pennini, PhD1; Aathira Santhosh, MA5; Marie Wax, MBA1; Robyn Woodbury, PhD6; Steve Chu, JD6; Tyler G. Merkeley, MS, MBA1; Gary L. Disbrow, PhD1; Rick A. Bright, PhD1; Thomas E. Macurdy, PhD6,7,8,9; Jeffrey A. Kelman, MD, MMSc6

In partnership with the CHEST Delegation Italy
Objectives

- Evaluate the burden of sepsis in the Medicare population
- Estimate contemporary national sepsis costs
- Forecast future Medicare costs for sepsis care

Healthcare quality improvement study
Medicare Data Analyzed
January 1, 2012 – December 31, 2018

Total Sepsis Inpatient Admissions
(Acute, Long Term, Psychiatric, Rehabilitation)

9,587,636

6,998,888
Fee For Service
Medicare Part A/B
(Paid Claims)

2,588,748
Medicare Advantage
Medicare Part C
(Encounter data)

6,731,828
Acute Hospital Sepsis Admissions

267,060
Other Inpatient Hospital Sepsis Admissions

1. Sepsis Present on Admission
2. Sepsis Not Present on Admission
 (Hospital Acquired)

DataLink Project
Pre-adjudicated administrative claims for real-time monitoring and research;
Inpatients and SNF

In partnership with the CHEST Delegation Italy
Sepsis Dataset

Accounted for ICD-9 to 10 transition: crosswalk similar, no discontinuity

Used Generalized Equivalence Mapping to provide a 1:1 crosswalk of ICD-9 and ICD-10

ICD-9/ICD-10 Transition

ICD-9: 038, 995.91, 995.92, 785.52
ICD-10 crosswalk:

Severity Stratification

Septic Shock:
ICD-9: 785.52 or ICD-10: R6521
Severe Sepsis without Shock:
ICD-9 995.92 or ICD-10: R6520
Non-Severe Sepsis, Unspecified:
ICD-9: 0389 or 995.91 or ICD-10: A419

6,731,828
Acute Hospital Sepsis Admissions

In partnership with the CHEST Delegation Italy

Virtual Congress
26 June 2020

congress.chestnet.org
Sepsis Incidence Trends

Exploring rates and counts of sepsis severity

Sepsis claims increased steadily
• Rate *per capita* (of Medicare beneficiaries) increased ~40%
• Medicare beneficiary total population increased ~22%

Seasonal variation during winter months (≈ respiratory Illness)
Could this be due to “over-coding”?

Not a major contributor, difficult to “overcode” severe sepsis and septic shock

However, proportions of septic shock and severe sepsis stay similar
- Might expect disproportionate fall in severe sepsis and septic shock if coding effect

 Increased across all severities
- Sepsis is more common
- Rate of increase ~40% / 7 years

![Graph showing fractional severity by month from Jan-12 to Jan-18.](image)

6,731,828 Acute Hospital Sepsis Admissions

In partnership with the CHEST Delegation Italy
Sepsis Incidence Trends

Exploring onset setting

Rise seen in admissions is exclusively in the present on admission (POA) group:
- Increased fraction: 87% (2012) to 93% (2018)
- Continues to rise in community

Hospital acquired sepsis (NPOA):
- Decreased fraction: 13% (2012) to 7.5% (2018)
- Decreased counts: 88,321 to 77,089
- Suggests hospital practices are improving
• Sepsis mortality reflected sepsis severity
 – Accumulates over 1 week, 6 months, 1 and 3 years

• Sepsis mortality steadily **decreased** in 7 year period
 – Non-sepsis mortality has no change
 – Suggests sepsis diagnosis and treatment is effective

• **High 3 year mortality**
 – 75% septic shock
 – 60% non-severe sepsis
 – 40% non-sepsis
Economic Burden of Sepsis

2013: Reported cost of sepsis, $23.7B
- Based on Agency for Healthcare Research and Quality (AHRQ) 2016 study on cost of septicemia
- Most expensive condition treated
- Medicare population ~$14.6B (61.5% of cost)

Contemporary Costs

Paid Claims per Admission

- Average claim payment decreases over time at all severities
 - $21,922 (2012)
 - $19,738 (2018)

- Average payment for SNF care rises slightly over time
 - $17,196 (2012)
 - $17,920 (2018)
2018 Medicare Beneficiary Sepsis Spend

The numbers in blue are FFS and real payments
The numbers in green are MA and imputed.

Total: $33,229,504,776

Total: $41,508,436,655

Total: $8,278,931,879

9,587,636 Sepsis Inpatient Admissions
2019 Medicare Beneficiary Sepsis Spend (Projected)

Inpatient

- FFS: $11,133,531,670
- MA: $23,711,924,186
- Total: $34,845,455,856

SNF

- FFS: $2,915,842,345
- MA: $6,267,570,831
- Total: $9,183,413,176

Total: ~$44,028,869,032

The numbers in **blue** are FFS and real payments.
The numbers in **green** are MA and imputed.
Total Sepsis Inpatient + SNF Estimated Costs

From the AHRQ-HCUP study

$14.6 \text{ BILLION} \quad \text{of the $23.7 billion total}

61.5\% \quad \text{of the total}

$35 \text{ BILLION} = 66.7\%

2019 Inpatient Medicare cost

Medicare total cost

TOTAL INPATIENT COST

$53 \text{ BILLION}

Estimated SNF costs, Medicare only

$9 \text{ BILLION}

Used a more conservative number to account for the aging of the US population

In partnership with the CHEST Delegation Italy
Direct Costs of Sepsis in the US

$62 BILLION

...conservative rough order of magnitude
lower bound
Medicare Claims Data Analyzed
January 1, 2012 – December 31, 2018

9,587,636 Total Sepsis Inpatient Admissions
(Acute, Long Term, Psychiatric, Rehabilitation)

6,998,888 Fee For Service
Medicare Part A/B
(Paid Claims)

2,588,748 Medicare Advantage
Medicare Part C
(Encounter data)

736,189 Unique Sepsis Patients
CY 2017
NO Sepsis Admission 2016

6,803,165 Non-Sepsis Admission
NO Sepsis Admission 2016

DataLink Project
Pre-adjudicated administrative claims for real
time monitoring and research;
Inpatients and SNF

Largest in-patient epidemiological study
Lead-in to Admission:
Can we use chronic conditions to predict who is going to be septic?
Chronic Conditions - Comparison

Sepsis

- Personal history of other...
- Chronic ischemic heart...
- Type 2 diabetes mellitus...
- Other and unspecified...
- Malaise and fatigue...
- Abnormalities of...
- Encounter for...
- Long term (current) drug...
- Disorders of lipoprotein...
- Essential (primary)...

Non-Sepsis

- Type 2 diabetes mellitus...
- Dorsalgia (251,346)¹
- Malaise and fatigue...
- Other joint disorder, not...
- Other and unspecified...
- Abnormalities of...
- Encounter for...
- Long term (current) drug...
- Disorders of lipoprotein...
- Essential (primary)...

[¹] Sepsis

In partnership with the CHEST Delegation Italy

congress.chestnet.org
Chronic Conditions - Comparison

<table>
<thead>
<tr>
<th>Condition</th>
<th>Sepsis</th>
<th>Non-Sepsis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal history of other disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic ischemic heart disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 2 diabetes mellitus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other and unspecified disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malaise and fatigue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abnormalities of lipoproteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encounter for malaise and fatigue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long term (current) drug use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disorders of lipoproteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Essential (primary)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 2 diabetes mellitus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dorsalgia (251,346)¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malaise and fatigue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other joint disorder, not specified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other and unspecified disorders</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Dorsalgia (251,346)¹ indicates a specific code or identifier relevant to the condition.
Sepsis versus Non-Sepsis Inpatient Admissions

Top Prevalent Diagnoses Before a Sepsis Admission Relative to a Non-Sepsis Admission\(^1\)

- Unspecified dementia (13,228; 19%)\(^2\)
- Fever of other and unknown origin (11,242; 16%)\(^2\)
- Aphagia and dysphagia (11,198; 16%)\(^2\)
- Pressure ulcer (7,544; 11%)\(^2\)
- Other lack of coordination (7,312; 11%)\(^2\)
- Other sepsis (7,088; 10%)\(^2\)
- Dementia in other diseases classified elsewhere (6,790; 10%)\(^2\)
- Alzheimer’s disease (6,271; 9%)\(^2\)
- Streptococcus, Staphylococcus, and Enterococcus as the cause of diseases classified elsewhere (3,870; 6%)\(^2\)
- Unspecified protein-calorie malnutrition (3,820; 6%)\(^2\)

In partnership with the CHEST Delegation Italy

congress.chestnet.org
Sepsis versus Non-Sepsis Inpatient Admissions

Top Prevalent Diagnoses Before a Sepsis Admission Relative to a Non-Sepsis Admission

- Unspecified dementia (13,228; 19%)^2
- Fever of other and unknown origin (11,242; 16%)^2
- Aphagia and dysphagia (111,198; 16%)^2
- Pressure ulcer (7,544; 11%)^2
- Other lack of coordination (7,312; 11%)^2
- Other sepsis (7,088; 10%)^2
- Dementia in other diseases classified elsewhere (6,790; 10%)^2
- Alzheimer’s disease (6,271; 9%)^2
- Streptococcus, Staphylococcus, and Enterococcus as the cause of diseases classified elsewhere (3,870; 6%)^2
- Unspecified protein-calorie malnutrition (3,820; 6%)^2

Prevalence Ratio

^1 In partnership with the CHEST Delegation Italy

^2 congress.chestnet.org
Average Predicted Probability of Death
Within 1 Week of Discharge

<table>
<thead>
<tr>
<th>Condition</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Present on Admission</td>
<td>35.1%</td>
</tr>
<tr>
<td>Present on Admission</td>
<td>17.6%</td>
</tr>
<tr>
<td>Organism Specified</td>
<td>8.4%</td>
</tr>
<tr>
<td>Unspecified Sepsis</td>
<td>12.5%</td>
</tr>
<tr>
<td>Severe Sepsis</td>
<td>17.7%</td>
</tr>
<tr>
<td>Septic Shock</td>
<td>39.8%</td>
</tr>
</tbody>
</table>

Hospital acquired (NPOA) sepsis doubles likelihood of early death.
Regardless of Severity:

- Mortality is high
- But decreased
- Why 6 months?

Of all the deaths that occur within 3 years of discharge
~ half occur by 6 months
Where are patients 6 months after discharge?

SEPSIS
- 56.4% in Family Home
- 5.8% in Nursing Home
- 2.2% in Skilled Nursing Facility
- 1.8% in Hospice
- 1.2% (Any IP)
- 32.6% in Inpatient Hospital
- 1.4% in Deaths

NON-SEPSIS
- 79.3% in Family Home
- 3.3% in Nursing Home
- 1.4% in Skilled Nursing Facility
- 1.8% in Hospice
- 1% (Any IP)
- 13.3% in Inpatient Hospital
- 1.7% in Deaths
If one goes first to a SNF, then what? (6 months)

SEPSIS
- 44.9% Family Home
- 6.4% Skilled Nursing Facility
- 17% Nursing Home
- 1.5% (Any IP) Inpatient Hospital
- 3% Hospice
- 27.2% + 6.5% Deaths

NON-SEPSIS
- 60.1% Family Home
- 5% Skilled Nursing Facility
- 1.2% (Any IP) Inpatient Hospital
- 2.5% Hospice
- 19.6% + 4.3% Deaths
Modeling 6-Month Mortality – Effect of Age

Multivariate Logistic Regression

OR 1.16
Overall Conclusions

- Sepsis is extremely costly in lives and financially
- Incidence of sepsis actually is increasing – not an artifact of coding or billing
- Mortality rate is decreasing
- Cannot predict sepsis vs. non-sepsis admissions
- Sepsis markedly worsens outcomes and quality of life even in the mildest cases
Treatment
Association Between Volume of Fluid Resuscitation and Intubation in High-Risk Patients With Sepsis, Heart Failure, End-Stage Renal Disease, and Cirrhosis

Rizwan A. Khan, MD; Nauman A. Khan, MD; Seth R. Bauer, PharmD; Manshi Li, MS; Abhijit Duggal, MD, MPH; Xiaofeng Wang, PhD; and Anita J. Reddy, MD

CHEST 2020; 157(2):286-292
Background

• Fluids are mainstays of sepsis resuscitation
• Surviving Sepsis Guidelines recommend an initial 30 mL/kg crystalloid fluid for hypotensive patients
• Concern for increased intubation rate and mortality
Methods

• Retrospective analysis
• Sepsis patients – modification of eSOFA (CDC)
• Patients with pre-existing CHF, cirrhosis, end-stage renal disease
• LVEF < 40% or > 40%
• Propensity matching
• Primary outcome – intubation within 72 hours
• Secondary outcomes - time to intubation,
Demographics and Baseline Data

TABLE 1 Patient Characteristics and Clinical Variables of Both Groups

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All Patients (N = 208)</th>
<th>Restricted Group (< 30 ml/kg (n = 104)</th>
<th>Standardized Group (> 30 ml/kg (n = 104)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>63 ± 14</td>
<td>62 ± 15</td>
<td>63 ± 14</td>
<td>.85</td>
</tr>
<tr>
<td>Male sex, No. (%)</td>
<td>119 (57%)</td>
<td>60 (58%)</td>
<td>59 (57%)</td>
<td>.89</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>84.6 ± 25</td>
<td>86.6 ± 25</td>
<td>82.7 ± 25</td>
<td>.11</td>
</tr>
<tr>
<td>Comorbid condition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart failure</td>
<td>147 (71%)</td>
<td>72 (69%)</td>
<td>75 (72%)</td>
<td>.65</td>
</tr>
<tr>
<td>HFrEF (≤ 40%)</td>
<td>32 (22%)</td>
<td>20 (28%)</td>
<td>12 (16%)</td>
<td>.65</td>
</tr>
<tr>
<td>HFrEF (> 40%)</td>
<td>115 (78%)</td>
<td>52 (72%)</td>
<td>63 (84%)</td>
<td>.65</td>
</tr>
<tr>
<td>ESRD</td>
<td>57 (27%)</td>
<td>30 (29%)</td>
<td>27 (26%)</td>
<td>.65</td>
</tr>
<tr>
<td>Cirrhosis</td>
<td>60 (28%)</td>
<td>30 (29%)</td>
<td>30 (29%)</td>
<td>.99</td>
</tr>
<tr>
<td>Sepsis level, %</td>
<td></td>
<td></td>
<td></td>
<td>.70</td>
</tr>
<tr>
<td>Sepsis</td>
<td>93 (45%)</td>
<td>45 (43%)</td>
<td>48 (46%)</td>
<td>.70</td>
</tr>
<tr>
<td>Septic shock</td>
<td>115 (55%)</td>
<td>59 (57%)</td>
<td>56 (54%)</td>
<td>.92</td>
</tr>
<tr>
<td>APACHE III score</td>
<td>88 ± 30</td>
<td>88 ± 25</td>
<td>88 ± 34</td>
<td>.75</td>
</tr>
<tr>
<td>MAP at diagnosis</td>
<td>69 ± 14</td>
<td>70 ± 16</td>
<td>69 ± 12</td>
<td>.75</td>
</tr>
<tr>
<td>Mean MAP over 24 h</td>
<td>73 ± 10</td>
<td>73 ± 10</td>
<td>74 ± 9</td>
<td>.66</td>
</tr>
<tr>
<td>Lactate at diagnosis, mmol/L</td>
<td>3.0 ± 2.2</td>
<td>3.0 ± 2.7</td>
<td>3.1 ± 1.7</td>
<td>.67</td>
</tr>
</tbody>
</table>
Table 2: Primary and Secondary Outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Restricted Group (< 30 mL/kg)</th>
<th>Standardized Group (> 30 mL/kg)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intubation within 72 h</td>
<td>36 (35%)</td>
<td>33 (32%)</td>
<td>.64</td>
</tr>
<tr>
<td>Change in FiO_2, %</td>
<td>6 ± 14</td>
<td>7 ± 12</td>
<td>.89</td>
</tr>
<tr>
<td>Time to intubation, h</td>
<td>14 ± 15</td>
<td>16 ± 19</td>
<td>.55</td>
</tr>
<tr>
<td>Alive ICU-free days at day 28</td>
<td>17 ± 10</td>
<td>17 ± 11</td>
<td>.64</td>
</tr>
<tr>
<td>Hospital mortality</td>
<td>19 (18%)</td>
<td>26 (25%)</td>
<td>.21</td>
</tr>
<tr>
<td>Ventilator days</td>
<td>11 ± 16</td>
<td>10 ± 12</td>
<td>.96</td>
</tr>
</tbody>
</table>
Fluid Response Evaluation in Sepsis Hypotension and Shock: A Randomized Clinical Trial

Ivor S. Douglas, Philip M. Alapat, Keith A. Corl, Matthew C. Exline, Lui G. Forni, Andre L. Holder, David A. Kaufman, Akram Khan, and others

Publication stage: In Press Journal Pre-Proof

CHEST

Published online: April 27, 2020

Open Access
Background

- Fluids are mainstays of sepsis resuscitation
- Excess fluid associated with edema, organ dysfunction, respiratory and renal failure, and mortality
- Surviving Sepsis Guidelines recommend that fluid administration is guided by dynamic measures
- No recommendations are given for how to achieve this
Previous Work

- Retrospective
- Sepsis patients managed by SV measurement
- Reduced
 - Volume
 - LOS
 - Mechanical ventilation
 - Dialysis
 - Cost of care by $18,000/case

Methods

• Randomized, controlled trial
• Adult patients with sepsis and refractory hypotension
• Intervention arm vs usual care (2:1 randomization)
 – Non-Invasive Cardiac Output Monitor (NICOM)
 – Passive leg raise, SV response > 10%
 – 500 mL crystalloid bolus
 – Repeat process until SV < 10%; stop boluses, no maintenance fluids
• Primary Outcome – net fluid balance at 72 hours
• Secondary outcomes – mech vent, dialysis, LOS, mortality, vent hours, vasopressor hours, Δ creatinine, adverse events
Results

Table 1. Study Demographics

<table>
<thead>
<tr>
<th></th>
<th>mITT (124)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intervention N=83</td>
<td>Usual Care N=41</td>
<td></td>
</tr>
<tr>
<td>Age (yrs)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ± SD (N)</td>
<td>61.8 ± 16.9 (83)</td>
<td>62.7 ± 15.0 (41)</td>
<td></td>
</tr>
<tr>
<td>Median (Q1, Q3)</td>
<td>65.0 (48.0, 75.0)</td>
<td>63.0 (55.0, 74.0)</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>61.4% (51/83)</td>
<td>31.7% (13/41)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>38.6% (32/83)</td>
<td>68.3% (28/41)</td>
<td></td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>mITT (124)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intervention N = 83</td>
<td>Usual Care N = 41</td>
<td>Treatment Difference in Mean or Percentage, and 95% CI</td>
</tr>
<tr>
<td>Primary Efficacy Endpoint</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluid Balance (L) at 72 hours or ICU Discharge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ± SD (N)</td>
<td>0.65 ± 2.85 (83)</td>
<td>2.02 ± 3.44 (41)</td>
<td>-1.37 (-2.53, -0.21)</td>
</tr>
<tr>
<td>Median (Q1, Q3)</td>
<td>0.53 (-0.84, 2.53)</td>
<td>1.22 (-0.03, 3.73)</td>
<td></td>
</tr>
</tbody>
</table>
Results
Thank You!